欢迎来到:湖北大学数学与统计学学院!

学术报告
当前位置: 网站首页 > 学术报告 > 正文
On extremal nonsolid bricks
作者:      发布时间:2021-01-05       点击数:
报告时间 2021年01月08日14:00 报告地点 腾讯会议(会议ID:238 525 244)
报告人 卢福良(闽南师范大学)

报告名称:On extremal nonsolid bricks

主办单位:数学与统计学学院

报告专家:卢福良

专家所在单位:闽南师范大学

报告时间:2021年1月8日14:00

报告地点:腾讯会议(会议ID:238 525 244)

专家简介:卢福良,“闽江学者”特聘教授,闽南师范大学首批“龙江学者”特聘教授,先后主持国家自然科学基金项目3项。主要研究兴趣:图的匹配理论、边染色等,已在Electron. J. Comb.、SIAM J. Discrete Math.、J. Graph Theory等期刊发表论文20余篇。

报告摘要:A3-connected graph is a brick if, after the removal of any two distinct vertices, the resulting graph has a perfect matching. Lovasz [Matching structure and the matching lattice, J. Combin. Theory (B) 43 (1987), 187-222] proved that the dimension dim(G) of the matching lattice of a brick G is equal to |E(G)|−|V (G)| + 1. We say a brick G is extremal if the number of perfect matchings in G is exactly dim(G).

De Carvalho, Lucchesi and Murty [Graphs with independent perfect matchings, Jour- nal of Graph Theory 48 (2005), 19-50] characterized extremal bricks and conjectured that every extremal nonsolid brick other than the Petersen graph is the result of the splicing of an extremal brick and a K4, up to multiple edges. In this talk, we present an infinite family of graphs showing that this conjecture fails. This is a joint work with Xing Feng.

邀请人:刘慧清


版权所有© 湖北大学 2014 湖北大学数学与统计学学院

地址:湖北省武汉市武昌区友谊大道368号 邮政编码:430062

Email:stxy@hubu.edu.cn 电话:027-88662127