欢迎来到:湖北大学数学与统计学学院!

学术报告
当前位置: 网站首页 > 学术报告 > 正文
Covariate-adaptive randomization with variable selection in clinical trials
作者:      发布时间:2020-12-04       点击数:
报告时间 2020年12月12日10:00 报告地点 腾讯会议(会议ID:129 885 134)
报告人 尹建鑫(中国人民大学)

报告名称:Covariate-adaptive randomization with variable selection in clinical trials

主办单位:湖北大学数学与统计学学院

报告专家:尹建鑫

专家所在单位:中国人民大学

报告时间:2020年12月12日10:00-11:00

报告地点:腾讯会议(会议ID:129 885 134)

专家简介:尹建鑫,中国人民大学副教授,统计学院副院长,博士生导师。2009年在北京大学获得博士学位。2009年至2011年在美国宾夕法尼亚大学医学院生物统计系做博士后研究。2011年起在中国人民大学统计学院历任讲师、副教授。从事高维变量选择、图模型估计、结构学习算法、生物医学数据分析、文本数据非结构化建模等方面的研究。

报告摘要:In clinical trials and causal inference, it is often critical to balance treatment allocation over influential covariates. In big data era, the number of covariates is usually very large, among which only a small fraction of them are influential to the response variable, due to sparsity. However, existed studies assume that all influential covariates are known, fixed and given. In this talk, we propose a procedure that can select the influential covariates from a diverging number of candidates and keep the allocation balanced among the important covariates, simultaneously. Under mild regulatory conditions, we show that the proposed procedure can pick out important covariates and balance treatment allocation among the important covariates consistently. Further, balancing treatment allocation can help the selection of important covariate, while picking out important covariates can help the randomization more efficient. Numerical studies support our theoretical discoveries for the proposed procedure. We also apply our method on a virtual re-design dataset of advertising vehicle choosing and show the advantages of the proposed procedure.

邀请人:刘展



版权所有© 湖北大学 2014 湖北大学数学与统计学学院

地址:湖北省武汉市武昌区友谊大道368号 邮政编码:430062

Email:stxy@hubu.edu.cn 电话:027-88662127