报告名称:On the general dual Orlicz-Minkowski problems
主办单位:数学与统计学学院
报告专家:Deping Ye
专家所在单位:Memorial University, Canada
报告时间:2020年11月9日21:30-23:30
报告地点:腾讯会议(会议ID:499755788)
专家简介:Professor Deping Ye于2009年博士毕业于美国Case Western Reserve University,师从于著名数学家Szarek教授和Werner教授(两者都是美国数学会院士)。 现任职于加拿大Memorial University,并主持加拿大国家自然科学基金(NSERC)项目。获得2017年JMAA Ames奖。 长期从事凸几何分析,几何和泛函不等式,随机矩阵,量子信息理论和统计学等领域的研究。 已在国际著名杂志上发表论文30多篇。 主要贡献包括一系列重要的仿射等周长不等式,开创了dual Orlicz-Brunn-Minkowski理论的研究,首次提出了general dual Orlicz-Minkowski问题以及对相关问题的深入研究。解决了著名的爱因斯坦“远处飘忽不定的幽灵”的普遍存在性这一长久未解决的难题,该论文(与G. Aubrun和S. Szarek合作)“Entanglement thresholds for random induced states” 发表在国际顶级数学杂志Comm. Pure Appl. Math.,并且引起社会各界的广泛关注和讨论。关于该工作的新闻报道 “Einstein's 'spooky action' common in large quantum systems”,“Quantum entanglement isn’t only spooky, you can’t avoid it” 和 “Quantum entanglement common in large dimension” 曾在Google搜索中出现超过360000(36万)个搜索条。
报告摘要:The famous optimal mass transportation problem is one of the most important problems in mathematics and many related areas. Under certain conditions, such a problem can be reformulated by some second order elliptic partial differential equations, i.e., the Monge-Ampere type equations. Contributions in these areas have produced several awardees of the Nobel prize, Fields prize and Wolf prize).
In convex geometry, it is well-known that the celebrated Minkowski problem can be reformulated by some Monge-Ampere equations. This problem was initiated by Minkowski over a century ago, and has found fundamental applications in many areas, such as analysis, geometry, and partial differential equations.
In my talk, I will present our recent contributions on the general dual Orlicz-Minkowski problems, which is arguably the most general extension of the Minkowski problem. In particular, I will explain our motivation and solutions to the general dual Orlicz-Minkowski problems.
邀请人:向妮