报告名称:On the non-degeneracy of radial vortex solutions for a coupled Ginzburg-Landau system
主办单位:数学与统计学学院
报告专家:杨军(教授)
专家所在单位:华中师范大学数学与统计学院
报告时间:2019年12月6日10:00-11:00
报告地点:数学与统计学学院203报告厅
专家简介:杨军,教授,博士生导师,2007年获得香港中文大学数学哲学博士学位,访问过多个国际著名数学研究中心,主持国家自然科学基金青年项目和面上项目等多个国家课题。主要研究方向是非线性偏微分方程和非线性分析,在多个国际高水平学术期刊上发表论文,如:Geometric and Functional Analysis、Transactions of the American Mathematical Society、Indiana University Mathematical Journal、Communications in Partial Differential Equations、SIAM Journal on Mathematical Analysis等。
报告摘要:For the coupled Ginzburg-Landau system in R^2 with suitable constraints for the constant coefficients, the radially symmetric solution w(x)=(u,v)with degree pair (1,1) was given by A. Alama and Q. Gao in J. Differential Equations 255 (2013), 3564-3591. We will concern its linearized operator L around w and prove the non-degeneracy result under one more assumption. As an application of the non-degeneracy result, a solvability theory for the linearized operator L will be given.
邀请人:陈立