欢迎来到:湖北大学数学与统计学学院!

学术报告
当前位置: 网站首页 > 学术报告 > 正文
Neural Networks and Deep Learning 1
作者:      发布时间:2017-02-24       点击数:
报告时间 报告地点
报告人

学术报告:Neural Networks and Deep Learning

报告专家:王玉龙

报告时间:2017年2月27日(星期一)9:00-10:30

报告地点:数统学院511报告厅

专家简介:王玉龙,博士毕业于澳门大学计算机和信息科学系,主要从事模式识别与机器学习研究。2010年和2013年在湖北大学获得学士学位和硕士学位。目前,在模式识别与机器学习领域已发表了10余篇SCI论文,其中包括8篇国际权威期刊IEEE Transactions论文,如IEEE Transactions on Image Processing, IEEE Transactions on Signal Processing,IEEE Transactions on Neural Networks and Learning Systems等。

报告摘要:Recently, deep learning has achieved great success in a wide range of areas, such as speech recognition, image recognition, and natural language processing. Artificial neural network is a biologically-inspired programming paradigm which enables a computer to learn from observational data. Deep learning methods, also called deep neural networks, are representation learning with multiple levels of representation, obtained by composing simple but non-linear modules that each transforms the representation at one level into a representation at a higher, slightly more abstract level. This report aims to introduce the history and some basic facts of neural networks and deep learning from a mathematical prospective.


版权所有© 湖北大学 2014 湖北大学数学与统计学学院

地址:湖北省武汉市武昌区友谊大道368号 邮政编码:430062

Email:stxy@hubu.edu.cn 电话:027-88662127