欢迎来到:湖北大学数学与统计学学院!

学术报告
当前位置: 网站首页 > 学术报告 > 正文
Learning Hierarchical Spectral-Spatial Features for Hyperspectral Image Classification
作者:魏艳涛(华中师范大学)      发布时间:2015-11-20       点击数:
报告时间 报告地点
报告人

报告名称:

Learning Hierarchical Spectral-Spatial Features for Hyperspectral Image Classification

报告作者:

魏艳涛

作者简介:

所在学校:

华中师范大学

职称:

讲师

其他

博士、博士后

报告时间:

2015年11月25日(周三)下午4:30-5:30

报告地点:

数统学院201学术报告厅

报告摘要:

In this talk, I will introduce a spectral-spatial feature learning (SSFL) method for hyperspectral images (HSIs). It combines the spectral feature learning and spatial feature learning in a hierarchical fashion. Stacking a set of SSFL units, a deep hierarchical model called the spectral-spatial networks (SSN) is further proposed for HSI classification. SSN can exploit both discriminative spectral and spatial information simultaneously. Specifically, SSN learns useful high-level features by alternating between spectral and spatial feature learning operations. Then, kernel-based extreme learning machine (KELM), a shallow neural network, is embedded in SSN to classify image pixels. Extensive experiments are performed on two benchmark HSI datasets to verify the effectiveness of SSN. Compared with state-of-the-art methods, SSN with a deep hierarchical architecture obtains higher classification accuracy in terms of the overall accuracy, average accuracy, and kappa (κ) coefficient of agreement, especially when the number of the training samples is small.


版权所有© 湖北大学 2014 湖北大学数学与统计学学院

地址:湖北省武汉市武昌区友谊大道368号 邮政编码:430062

Email:stxy@hubu.edu.cn 电话:027-88662127