欢迎来到:湖北大学数学与统计学学院!

学术报告
当前位置: 网站首页 > 学术报告 > 正文
Kernel-based Sparse Regression with the Correntropy-induced Loss
作者:陈洪(华中农业大学)      发布时间:2015-10-19       点击数:
报告时间 报告地点
报告人

报告名称:

Kernel-based Sparse Regression with the Correntropy-induced Loss

报告作者:

陈洪

作者简介:

所在学校:

华中农业大学

职称:

副教授

其他

博士

报告时间:

2015年10月26日(周一)下午2:30-4:00

报告地点:

数统学院201学术报告厅

报告摘要:

The correntropy-induced loss (C-loss) has been employed in learning algorithms

to improve their robustness to non-Gaussian noise and outliers recently. Despite its success on robust learning, only little work has been done to study the generalization performance of regularized regression with the C-loss. To enrich this theme, this paper investigates a kernel-based regression algorithm with the C-loss and l_1 regularizer in data dependent hypothesis spaces. The asymptotic learning rate is established for the proposed algorithm in terms of novel error decomposition and capacity-based analysis technique. The sparsity characterization of the derived predictor is studied theoretically. Empirical evaluations demonstrate its advantages over the related approaches. Finally, some extensions are also discussed.


版权所有© 湖北大学 2014 湖北大学数学与统计学学院

地址:湖北省武汉市武昌区友谊大道368号 邮政编码:430062

Email:stxy@hubu.edu.cn 电话:027-88662127