报告摘要:
| 作者简介:曹喜望,南京航空航天大学教授,博士生导师,江苏省”青蓝工程“学术带头人。主要研究领域是代数组合。在Finite Fields and Their Applications, IEEE Trans. IT, Designs, Codes and Crypt. 等国内外杂志发表论文60余篇。主持完成和承担国家自然科学基金面上项目两项。
报告摘要:Let $q=2^{n}$, $N=q+1$, $m$ a proper divisor of $N$. Let $mathbb{F}_q$ be the finite field with $q$ elements. In this talk, we will show that there is an element $alphain mathbb{F}_q$ such that $D_m(alpha)=D_m(alpha^{-1})=0$ under some restrictions, where $D_m(x)$ is the Dickson polynomial of the first kind of degree $m$. If $N$ is a Fermat number, Fredman conjectured that there is no such element $alpha$ satisfying the equation. We show that Fredman's Conjecture is a consequence of Wiedemann's conjecture.
|