报告名称:A characterization for an almost MDS code to be a near MDS code with applications
报告专家:洪绍方
专家所在单位:四川大学
报告时间:2024-08-25,16:00-18:00
报告地点:数统学院203
专家简介:洪绍方,四川大学数学学院教授、博士生导师,教育部新世纪优秀人才,四川省学术与技术带头人。1998年6月在四川大学获得理学博士学位,1998年7月至2000年6月,在中国科技大学数学系作博士后研究工作。2002年7月晋升教授。多次访问美国,法国,日本,以色列,韩国,以及香港和台湾等地区著名高校和研究所。于2013年参加在台湾大学举行的世界华人数学家大会,并作45分钟邀请报告。已经在国内外数学期刊发表学术论文百余篇,培养毕业硕士60多名,毕业博士20多名,其中多人已晋升教授职称。
报告摘要:Let $\bF}_q$ be the finite field of $q$ elements,where $q=p^{m}$ with $p$ being a prime number and $m$ beinga positive integer. Let $\C_{(q, n, \delta, h)}$be a class of BCH codes of length $n$ and designed $\delta$.A linear code $\C$ is said to be maximum distanceseparable (MDS) if the minimum distance $d=n-k+1$. If $d=n-k$,then $\C$ is called an almost MDS (AMDS) code.Moreover, if both of $\C$ and its dual code$\C^{\bot}$ are AMDS, then $\C$ is calleda near MDS (NMDS) code. In 2022, Geng, Yang, Zhang and Zhouproved that the BCH code $\C_{(q, q+1,3,4)}$ is an almostMDS code, where $q=3^m$ and $m$ is an odd integer, and they alsoshowed that its parameters is $[q+1, q-3, 4]$. Furthermore, theyproposed a conjecture stating that the dual code$\C^{\bot}_{(q, q+1, 3, 4)}$ is also an AMDS codewith parameters $[q+1, 4, q-3]$. In this talk, we firstpresent a characterization for the dual code of an almost MDScode to be an almost MDS code. Then we use this result to showthat the Geng-Yang-Zhang-Zhou conjecture is true. Our resulttogether with the Geng-Yang-Zhang-Zhou theorem implies thatthe BCH code $\C_{(q, q+1,3,4)}$ is a near MDS code.This is a joint work with Drs. S.Y. Qiang and H.K. Wei.