报告名称:Finding long cycles in 3-connected graphs
报告专家:Guantao Chen
专家所在单位:佐治亚州立大学
报告时间:2024年7月10日14:00-18:00
报告地点: 数统学院204
专家简介:陈冠涛,美国佐治亚州立大学杰出教授(Distinguished University Professor)、数学与统计系系主任,华中师范大学湖北省BRJH特聘教授,国际图论界权威期刊《图与组合》(Graphs and Combinatorics)执行编委。陈冠涛教授主要从事图论领域中的结构图论、极图理论、Ramsey理论等方向的基础理论研究,多次主持美国国家自然科学基金面上项目,在Journal of Combinatorial Theory Series B, Journal of Graph Theory, SIAM J. Discrete Mathematics和SIAM J. Computing等权威学术期刊上发表论文100余篇, 证明了十余个重要猜想,受到同行广泛的尊敬,并在2001年被美国佐治亚州立大学授予杰出成就奖(The Outstanding Achievement Faculty Award)。
报告摘要:A classic example of Tutte shows that there are 3-connected nonhamiltonian planar graphs. Moon and Morser in 1963 conjectured there is a universal constant c such that every 3-connected n-vertex planar graph has a long of length at least cn log32 . We will discuss a proof of this conjecture and related results on graphs with no K3,t-minors and graphs with bounded degrees.