报告名称:Lp boundedness of wave operators for high-order Schrödinger operators on the line
报告专家:李平 副教授
专家所在单位:长江大学
报告时间:2024年7月8日 10:00
报告地点: 数统学院
专家简介:
李平,长江大学信息与数学学院,副教授,目前主持国家基金面上项目一项;研究方向为调和分析及其应用、非交换调和分析;近年来聚焦于高阶薛定谔算子的色散估计、高阶波方程的色散估计、非交换调和分析的研究,取得了一系列原创性成果,这些成果部分发表于Journal of Functional Analysis,J. Diffferential Equations, Communications on Pure and Applied Analysis等期刊上。
报告摘要:
In this talk, we are mainly devoted to investigating the Lp boundedness of wave operators $W_\pm$ associated with high-order Schrödinger operators $H=(-\Delta)^m+V(x)$ with $m \geq 3$ in dimension one when zero is a regular point. Under a suitable decay condition on potential V, we established a general conclusion covering the already known results for the cases m=1,2 by a unified method. This work is joint with S. Chen, S. Huang and X. Yao.