报告名称:Matching extensions and Hypercube embeddings of Cayley graphs generated by transpositions
报告专家:冯永锝
专家所在单位:新疆大学
报告时间:2024年6月15日11:00-12:00
报告地点: 数统学院204会议室
专家简介:冯永锝,博士,新疆大学数学与系统科学学院副研究员,硕士生导师,近年来主要从事图论中和匹配相关, 图的着色,组合优化与算法等方面的研究。目前在J. Graph Theory,Discrete Math.,Discrete Appl.Math,Filomat 等重要期刊上发表论文20余篇,参与承担国家自然科学基金项目2项。
报告摘要:A connected graph Γ with a perfect matching of order at least 2k+2 is said to be kextendable if for every matching M of k edges can be extended to a perfect matching of Γ. The extendability number of Γ is the maximum integer k such that Γ is k-extendable. Let S be a subset of transpositions and generate n−element symmetry group S��. Firstly, we determine the extendability number of connected Cay(S��,S). Secondly, we characterize a connected IM-extendable Cay(S��,S). A graph is called a partial cube if it can be embedded into a hypercube isometrically.
Finally, we show that a connected Cay(S��,S) is a partial cube if and only if à is a bubble sort graph.